This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Carbohydrate Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713617200

Communication: Synthesis and Characterization of Some 3-Glycosyl-5-Substituted Isoxazoles with Potential Biological Activities. Mirta Liliana Fascio; Verónica Julieta Montesano; Norma Beatriz D'Accorso

To cite this Article Fascio, Mirta Liliana , Montesano, Verónica Julieta and D'Accorso, Norma Beatriz(2000) 'Communication: Synthesis and Characterization of Some 3-Glycosyl-5-Substituted Isoxazoles with Potential Biological Activities.', Journal of Carbohydrate Chemistry, 19: 3, 393 — 398

To link to this Article: DOI: 10.1080/07328300008544086 URL: http://dx.doi.org/10.1080/07328300008544086

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

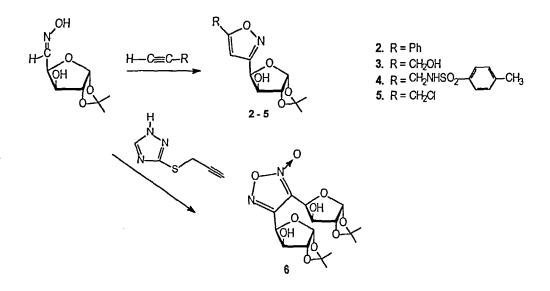
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

COMMUNICATION

SYNTHESIS AND CHARACTERIZATION OF SOME 3-GLYCOSYL-5-SUBSTITUTED ISOXAZOLES WITH POTENTIAL BIOLOGICAL ACTIVITIES.

Mirta Liliana Fascio, Verónica Julieta Montesano and Norma Beatriz D'Accorso*

Centro de Investigaciones de Hidratos de Carbono (CIHIDECAR). Departamento de Química Orgánica. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Ciudad Universitaria. Pabellón II. 3º Piso. C.P. 1428. Buenos Aires. Argentina.


Received May 21, 1999 - Final Form January 31, 2000

Isoxazoles are a family of heterocycles of great interest due to their diverse medicinal, agricultural and industrial applications.¹ Isoxazole derivatives are used as improved fluorescent probes for studying natural and synthetic lipids;² as muscle relaxants,³ for the treatment of hypercholesteremia, arteriosclerosis, and hyperlipidemia,⁴ as organic electrolytes for nonaqueous batteries,⁵ in photographic emulsions,⁶ and as synthetic intermediates.⁷ The 1,3-dipolar cycloaddition of nitrile oxides to alkynes provides a general synthetic method for these compounds.⁸

In previous papers we reported the synthesis of 3-glycosyl-5-substituted-2isoxazolines from unprotected⁹ and protected¹⁰ carbohydrate derivatives. Tronchet and coworkers¹¹ reported the synthesis of 2-isoxazolines and 3-glycosyl-5-phenylisoxazole from hydroxyl protected carbohydrate hydroximoyl chlorides.

393

In this work, we describe the synthesis of some 3,5 disubstituted isoxazoles using the following scheme.

Scheme 1

The 1,3-dipolar cycloaddition of 1,2-O-isopropylidene- α -D-xylo-pentadialdo-1,4furanose oxime¹⁰ to phenylacetylene, 2-propyn-1-ol, N-(2-propynyl)-p-toluenesulfonamide (1) and 3-chloro-1-propyne, all in the presence of chloramine-T, yielded, respectively, 3-(1,2-O-isopropylidene- α -D-threofuranos-4-yl)-5-phenylisoxazole (2), 5-hydroxymethyl-3-(1,2-O-isopropylidene- α -D-threofuranos-4-yl)isoxazole (3), 3-(1,2-O-isopropylidene- α -Dthreofuranos-4-yl)-5-[(N-p-toluenesulfonylamide)methyl]isoxazole (4) and 5chloromethyl-3-(1,2-O-isopropylidene- α -D-threofuranos-4-yl)isoxazole (5). However, the reaction with 3-(2-propynylthio)-1H-1,2,4-triazole¹² under same conditions, did not give the corresponding isoxazole. The main product was identified as 3,4-bis-(1,2-Oisopropylidene- α -D-threofuranos-4-yl)-1,2,5-oxadiazole-2-oxide (6). The formation of compound 6 can be attributed to the dimerization to furoxanes of nitrile oxides, which is the normal mode of decay of these kind of compounds.

The 1,3-dipolar cycloaddition of 1,2-O-isopropylidene- α -D-xylo-pentadialdo-1,4-furanose oxime as stable precursor of nitrile oxide to these alkynes, gave us isoxazoles (2 -

5) in moderate yields. When the dipolarophilic activity decreased, we could only isolate the furoxane 6 as the main product.

EXPERIMENTAL

General methods. Melting points were determined on a Unimelt apparatus and are uncorrected. Optical rotations were measured at 20 $^{\circ}$ C using a Perkin-Elmer 141 Polarimeter. NMR spectra were recorded with a Bruker AC 200 instrument (200.01 MHz for ¹H and 25 MHz for ¹³C), in CDCl₃ solution. Chemical shifts are given in ppm downfield from internal TMS. Mass spectra were performed with a Shimadzu QP-5000 spectrometer by EI technique. For TLC, silica gel 60 F₂₅₄ (Merck) coated plates were used, detection by UV light (254 nm) and spraying with a 10% solution of concentrated sulfuric acid in ethanol followed by heating.

N-(2-propynyl)-*p*-toluenesulfamide (1). To a solution of 1.5 mL (23.5 mmol) of 2-propynylamine in 8 mL of 15% DMF-water (v/v) , three portions of 1.46 g (7.6 mmoles) of *p*-toluenesulfonyl chloride were added, adjusting to alkalinity with aq NaOH (20%) each time. Finally the reaction mixture was stirred for another 30 min during which time the pH remained approximately constant. The stirred reaction mixture was then acidified with HCl (c), cooled in an ice bath, filtered and washed with water until neutral. The solid was dissolved in ethanol and the salt eliminated by filtration. The product was purified by silica gel G column chromatography using toluene-ethyl acetate mixtures. Compound 1 (83.5 mg, 4 mmol, 17 %) was obtained as a yellow solid; mp 63 - 64 °C. ¹H NMR (CDCl₃) δ 2.11 (t, 1 H, *J*= 2.5 Hz, CH), 2.43 (s, 3 H, Me), 3.83 (dd, 2 H, *J*= 2.5 Hz, 6.1Hz, CH₂), 4.60 (wide s, 1H, NH), 7.31 (d, 2H, *J*= 8.2 Hz)), 7.77 (d, 2H, *J*= 8.2 Hz) . ¹³C NMR (CDCl₃) δ 21.2 (Me), 32.5 (CH₂), 72.7 (CH), 78.0 (C), 127.1-129.4-136.3-143.5 (aromatic carbons).

Anal. Calcd for 4(C₁₀H₁₁NO₂S).H₂O: C, 56,21; H, 5,39. Found: C, 55,92; H, 5,28.

General Procedure. 3-(1,2-O-Isopropylidene- α -D-threofuranos-4-yl)-5substituted isoxazole. To a solution of 1,2-O-isopropylidene- α -D-xylo-pentadialdo-1,4furanose oxime¹⁰ (1.0 mmol) in minimum volume of ethanol at 0 °C, a solution of dipolarophile (in excess) in ethanol was added. Additional ethanol, was sometimes required for complete dissolution. The stirred reaction mixture was placed in an ice bath and 1.5 mmol of chloramine-T was added slowly. Once the reaction reached room temperature, it was heated between 60 - 80 °C. The course of the reaction was followed by TLC [toluene:ethyl acetate (1:1)] until the oxime had dissapeared. The salts were filtered, the solvent was evaporated and the syrup was purified by column chromatography on silica gel G, using toluene and toluene-ethyl acetate (95:5) as eluents.

3-(1,2-*O*-**Isopropylidene-α-D-threofuranos-4-yl)-5-phenylisoxazole (2).** The general procedure was applied using phenylacetylene (0.2 mL) as the dipolarophile yielding compound **2** (45%) as a crystalline solid which was recrystallized from 2-propanol: mp 159-160 °C; $[α]_D$ -47.4 (*c* 1, chloroform); ¹H NMR (CDCl₃) δ 1.36, 1.56 (two s, 6H, Me), 6.69 (s, 1 H, H-4), 6.09 (d, $J_{1',2'}$ = 3.6 Hz, 1 H, H-1'), 4.68 (d, $J_{2',3'}$ = 0 Hz, 1 H, H-2'), 4.56 (d, $J_{3',4'}$ = 2.3 Hz, 1 H, H-3'), 5.31 (d, 1 H, H-4'), 7.41-7.76 (m, 5 H, aromatic proton). ¹³C NMR (CDCl₃) δ 26.1, 26.8 (Me), 161.3 (C-3), 99.9 (C-4), 170.3 (C-5), 105.1(C-1'), 84.8 (C-2'), 76.1 (C-3', C-4'), 112.1 (C(Me)₂), 125.8-129.0-130.4 (aromatic carbons). Mass spectrum (EIMS): m/z (%) 303 (7.9, M⁺), 288 (11.4, M⁺ - CH₃'), 244 (6.0), 228 (27.2), 203 (7.8), 188 (10.9), 175 (27.2), 174 (100), 158 (11.2), 100 (51.5). HRMS Calcd for C₁₆H₁₇NO₅: 303.1107. Found: 303.1109.

Anal. Calcd for C₁₆H₁₇NO₅: C, 63.37; H, 5.61. Found: C, 63.03; H, 5.72

5-Hydroxymethyl-3-(1,2-*O*-isopropylidene-α-D-threofuranos-4-yl)isoxazole (3). The general procedure was applied using 2-propyn-1-ol (0.2 mL) as the dipolarophile yielding compound 3 (55%) as a syrup; [α]_D -49.8 (*c* 1, chloroform); ¹H NMR (CDCl₃) δ 1.36, 1.54 (two s, 6 H, Me), 6.37 (s, 1 H, H-4), 6.05 (d, $J_{1',2'}$ = 3.6 Hz, 1 H, H-1'), 4.65 (d, $J_{2',3'}$ = 0 Hz, 1 H, H-2'), 4.45 (d, $J_{3',4'}$ = 2.4 Hz, 1 H, H-3'), 5.25 (d, 1 H, H-4'), 4.72 (s, 2 H, CH₂), 3.25 (wide s, 1 H, OH). ¹³C NMR (CDCl₃) δ 26.0, 26.6 (Me), 160.6 (C-3), 102.2 (C-4), 171.7 (C-5), 104.9 (C-1'), 84.8 (C-2'), 75.9 (C-3'), 76.0 (C-4'), 112.2 (C(Me)₂), 55.8 (CH₂). Mass spectrum (EIMS): *m/z* (%) 257 (0.6, M⁺), 242 (26.5), 198 (3.8), 182 (54.0), 157 (4.3), 142 (13.9), 129 (48.0), 128 (100), 112 (15.5), 100 (30.6). HRMS Calcd for C₁₀H₁₂NO₆: 242.0665. Found: 242.0668.

Anal. Calcd for C₁₁H₁₅NO₆: C, 51.36; H, 5.84. Found: C, 51.27; H, 5.85.

3-(1,2-O-Isopropylidene- α -D-threofuranos-4-yl)-5-[(N-p-toluenesulfonylamide)methyl]isoxazole (4). The general procedure was applied using N-(2-propynyl)-ptoluenesulfamide (0.43 g) as the dipolarophile yielding compound 4 (33%) as a syrup, which crystallized in a mixture of ethanol: water; mp 156-157 °C; $[\alpha]_D$ -29.0 (*c* 1, chloroform); ¹H NMR (CDCl₃) δ 1.35, 1.53 (two s, 6 H, Me), 2.42 (s, 3H, Me), 6.21 (s, 1 H, H-4), 6.01 (d, $J_{1',2'} = 3.6$ Hz, 1 H, H-1'), 4.62 (d, $J_{2',3'} = 0$ Hz, 1 H, H-2'), 4.39 (d, $J_{3',4'} = 2.6$ Hz, 1 H, H-3'), 5.17 (d, 1 H, H-4'), 4.25 (d, $J_{NH-CH2} = 6.3$, 2H, CH₂), 5.69 (d, 1H, NH), 7.26 (d, 2 H, J = 8.3 Hz), 7.72 (d, 2 H, J = 8.3 Hz). ¹³C NMR (CDCl₃) δ 26.1, 26.7 (C(<u>C</u>H₃)₂), 21.5 (CH₃), 38.6 (CH₂), 160.7 (C-3), 103.1 (C-4), 168.2 (C-5), 104.9(C-1'), 84.8 (C-2'), 75.8 (C-3'), 76.0 (C-4'), 112.1 (<u>C</u>(Me)₂), 144.0-136.3-129.8-127.1 (aromatic carbons). Mass spectrum (EIMS): m/z (%) 410 (3.5, M⁺), 395 (6.6), 351 (1.9), 335 (8.6), 310 (1.0), 295 (1.2), 282 (5.8), 281 (19.9), 155 (33.0), 100 (15.8), 43 (100). HRMS Calcd for C₁₇H₁₉N₂O₇S: 395.0914. Found: 395.0916.

Anal. Calcd for C₁₈H₂₂N₂O₇S: C, 52.68; H, 5.37. Found: C, 52.94; H, 5.47.

5-Chloromethyl-3-(1,2-*O*-isopropylidene-α-D-threofuranos-4-yl)isoxazole (5). The general procedure was applied using propargylchloride (0.1 mL) as the dipolarophile yielding compound 5 (22%) as a syrup; $[α]_D$ -13.1 (*c* 1, chloroform); ¹H NMR (CDCl₃) δ 1.36, 1.55 (two s, 6 H, Me), 6.50 (s, 1 H, H-4), 6.07 (d, $J_{1',2'}$ = 3.6 Hz, 1 H, H-1'), 4.67 (d, $J_{2',3'}$ = 0 Hz, 1 H, H-2'), 4.53 (d, $J_{3',4'}$ = 2.5 Hz, 1 H, H-3'), 5.27 (d, 1 H, H-4'), 4.61 (s, 2 H, CH₂). ¹³C NMR (CDCl₃) δ 26.1, 26.8 (Me), 161.1 (C-3), 104.3 (C-4), 167.7 (C-5), 105.1(C-1'), 84.8 (C-2'), 75.8 (C-3'), 76.1 (C-4'), 112.2 (C(Me)₂), 29.6 (CH₂). Mass spectrum (EIMS): m/z (%) 276/278 (35, (M+H)[±]), 260/262 (65, M[±] - CH₃), 240 (22), 218/220 (42), 200/202 (100), 175/177 (9). HRMS Calcd for C₁₀H₁₁NO₅Cl: 260.0326. Found: 260.0325.

3,4-Bis-(1,2-*O***-isopropylidene-**α-**D-threofuranos-4-yl)-1,2,5-oxadiazole-2-ox-ide (6).** The general procedure was applied using 3-(2-propynylthio)-1H-1,2,4-triazole (0.21 g) as the dipolarophile yielding compound 6 (41 %) as a white solid which was recrystallized from ethanol: water; mp 180 - 182 $^{\circ}$ C; [α]_D +42.5 (*c* 1, chloroform); ¹H NMR (CDCl₃) δ 1.30-1.55 (two s,12 H, Me), 6.05 (d, 1H, H-1'), 6.06 (d, 1H, H-1''), 4.63 (d, 1H, H-2'), 4.65 (d, 1H, H-2''), 4.47 (d, 1H, H-3'), 4.59 (d, 1H, H-3''), 5.30 (d, 1H, H-4'), 5.53 (d, 1H, H-4''). ¹³C NMR (CDCl₃) δ 26.2-26.3-26.9-27.0 (Me), 105.0-105.1 (C-1'), 74.0-76.0-76.6-77.0-78.0 (C-2' and C-3'), 84.6-84.8 (C-4'), 112.7-113.2(C), 154.6 (C-3),113.2 (C-4).

Anal. Calcd for C₁₆H₂₂N₂O₁₀: C, 47.76; H, 5.47. Found: C, 47.96; H, 5.48

ACKNOWLEDGMENTS

The authors thank the CONICET and the UBA for financial support. Dr. N. B. D'Accorso is a research member of CONICET. They acknowledge FOMEC for the fellowship to V. J. M., and are indebted to UMYMFOR (CONICET- UBA) for the microanalyses.

REFERENCES AND NOTES

- S. A. Lang and Y-i. Lin; Comp. Heterocycl. Chem., 1st edn., 6, pp 1, 222, 231, 234, 237, 245, 250, 256, 259, 260 (1984).
- 2. Molecular Probes Inc.; US Pat. 5338854 (1994).
- 3. Mitsui Toatsu Chemicals, Mitsui Seiyaku Kogyoo KK, Toyama Chemical Co. Ltd.; Jpn. Kokai 06 116 146 (1994).
- 4. E. T. Marquis and J. R. Sanderson; US Pat. 52833356 (1994) (Chem. Abstr., 1994, 120, 217 649).
- 5. Union Carbide Corp.; Jpn. Kokai 59 181 464 (1984)
- 6. Konico Co.; Jpn. Kokai 03 263 033 (1991)
- 7. Sterling Drug Inc.; US Pat. 4755595 (1988).
- I,3-Dipolar Cycloaddition Chemistry, A. Padwa, Vol.1, Chapter 3, J. Wiley & Sons, New York, 1984, p 337.
- 9. M. L. Fascio and N. B. D'Accorso, J. Heterocycl. Chem., 33, 1573 (1996).
- M. L. Fascio, V. J. Montesano, and N. B. D'Accorso, J. Heterocycl. Chem., 35, 103 (1998).
- J. M. J. Tronchet, F. Barbalat-Rey, N Le-Hong and U. Burger, Carbohydr. Res., 29, 297 (1973).
- 12. Patent Agfa-Gevaert DE 2304322,1974. Chem Abs EN 81, 129840